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Abstract  

The pyrolysis of coking coals in a temperature range of 350 to 550 °C involves not just 

chemical changes but also physical changes, which are referred to as thermoplasticity. 

With increasing temperature in the thermoplastic range, coking coals become softened 

and coalesce into a plastic mass and are then resolidified into a solid porous coke. These 

stages take place layer by layer in a coke oven due to the temperature gradients. A coal 

charge in an industrial coke oven undergoes a plastic transformation, which corresponds 

to the formation of a plastic layer. The plastic layer is a foam-like material consisting of 

molten vitrinite and liptinite, solid coal components (inertinite macerals) and the gases 

generated by the decomposition of the coal. It forms near the heating walls and migrates 

toward the centre of the oven. The migration is attributed to a decrease in the temperature 

gradient in the coke oven as the coal charge adjacent to the heating wall is heated rapidly 

and the heat is then transmitted to the rest of the coal charge. As the temperature exceeds 

the resolidification temperature, the plastic layer gradually converts into a layer of 

viscoelastic semi-coke, having a typical cellular coke structure. With a further 

temperature increase, the order and size of the aromatic layers of the semi-coke increase, 

followed by condensation reactions which correspond to the formation of the solid porous 

residue, coke. When the plastic layers merge in the centre of the oven and the centre 

temperature reaches a desirable temperature (900-1100 °C), followed by a period of 

soaking time, the whole coal charge is converted into coke. The coking process occurs 

over approximately 17-18 hours. After the venting of residual gases, the coke oven doors 

are opened in order for the coke to be pushed from the batteries. Once the coke has been 

quenched, it is crushed and screened to obtain the proper size for use in a blast furnace. 

The formation of the plastic layer is considered as a critical stage in the coking process 

as the pore structures, which are closely related to the coke quality, are mainly determined 

during this process. The generation of significant amounts of volatile matters (gases) in 

the thermoplastic phase builds up the internal gas pressure (IGP). The transmission of 

IGP to the coke oven walls causes coking pressure against the walls, which is referred to 

as the oven wall pressure (OWP). It is known that an excessive OWP causes serious oven 

wall damage, shortening the battery life and an increased pushing force when the coke is 

discharged. To prevent these problems, a maximum allowable OWP of 10 kPa is widely 

accepted. 
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The physical and chemical changes that occur in a thermoplastic temperature range have 

been widely investigated due to their impacts on the coal-coke transformation and the 

phenomenon attributed to the formation of the plastic layer. Pre-heated samples prepared 

in the thermoplastic range were analysed by a variety of analytical techniques, such as 

Fourier-transform infrared spectroscopy (FTIR), solid-state 13C nuclear magnetic 

resonance (SSNMR), X-ray powder diffraction (XRD). A two-stage solvent extraction 

was used to acquire the light and heavy extracts formed in the thermoplastic range. The 

extracts were analysed using laser desorption time-of-flight imaging mass spectrometry 

(LDI-TOF-IMS), 1H nuclear magnetic resonance (NMR) spectrometry and gas 

chromatography-mass spectrometry (GC-MS). An in-situ FTIR was employed to measure 

the functional group changes while a single coking coal was heated in the thermoplastic 

range. These studies provide an understanding of the changes in the chemical structures 

that occur in the thermoplastic stage and proposes explanations for its mechanisms.  

 

However, what happens in real coking conditions, in particular heating conditions, is far 

more complicated than in the above experimental conditions. Therefore, another way of 

studying the plastic layers is by direct observation of the process and in-situ measurement 

of the thermoplastic properties, while they are happening, although this is extremely 

difficult for coal heated in an oven. However, a few attempts have been made by different 

researchers who have used sole-heated ovens combined with micro-CT and X-ray filming 

techniques. These techniques were employed to observe the pore structures inside the 

plastic layer, which provided a better understanding of the transitions in the physical 

structures of coal to coke during the coking process. However, these techniques used 

rather small amounts of coal samples (several hundred grams scale) which were heated 

from one side. This means that the heat transfer conditions, including the temperature 

gradients, may vary greatly from those in a practical coke oven. Under such conditions, 

it is questionable whether the characteristics of the plastic layer would be equivalent to 

those in large-scale ovens. In addition, the previous research activities have largely 

focused on the changes in the physical structures of the plastic layer, rather than the 

changes in the chemical structures.  

 

Therefore, the main objectives of this study are to investigate the changes in the chemical 

and physical structures inside the plastic layer, under practical heating conditions, in order 
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to provide insights into the underlying mechanisms of the plastic layer. In particular, this 

research is focused on the: (a) development of a 4 kg laboratory-scale coke oven which 

enables the sampling of plastic layer samples and the in-situ measurement of the 

temperature profiles and internal gas pressures at different locations under practical 

heating conditions; (b) characterization of the thermoplastic behaviours of six Australian 

coking coals with varying petrographic properties and Gieseler maximum fluidities using 

the 4 kg coke oven; (c) in-situ study of the formation of the plastic layers regarding the 

changes in the thicknesses of the plastic layers and the internal gas pressures during 

coking; (d) characterization of the changes in the physical and chemical structures inside 

the plastic layers formed from the six Australian coking coals through a combination of 

analytical techniques; and (e) identifying the effects of the petrographic properties and 

Gieseler maximum fluidities on the characteristics of the plastic layers.  

 

To achieve these objectives, a 4 kg laboratory-scale double-heated coke oven was 

employed for the in-situ measurement of the temperature histories and internal gas 

pressures in different locations of the coal charge and the sampling of plastic layer 

samples. A noticeable geometric feature of the 4 kg coke oven is that the length of the 

laboratory coke oven (400 mm) is similar to the width of a practical coke oven. 

Additionally, insulation enveloped the surface of the coal charge, except for the heating 

wall sides, in order to simulate the one-dimensional heat transfer from the heating walls. 

Six Australian coking coals with different petrographic properties and Gieseler maximum 

fluidities were selected for the coking experiments. The crushed coals were charged in 

the coke reactor with a packing density of 825kg/m³ and were placed in the coke oven for 

heating. The pressure probes, together with the thermocouples, were placed across the 

width of the coal charge to measure the temperature profiles and IGPs at multiple points 

throughout the coking cycle. For the plastic layer sampling, the sampling probe located 

in the coke reactor was used to acquire semi-coke samples that consisted of loose coal, 

thermoplastic regions and coke/semi-cokes. The pore structures of the semi-coke samples 

were analysed using the Synchrotron micro-CT in a non-destructive method before the 

extraction of the plastic layer samples. The plastic layer samples were then sectioned from 

the thermoplastic regions of the semi-coke samples and they were analysed using 

attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy and a 

thermogravimetric analyser coupled with a Fourier-transform infrared spectrometer (TG-



xv 

 

FTIR). The ATR-FTIR was used to analyse the chemical structures of the parent coals 

and the sectioned plastic layer samples regarding their structural parameters, such as 

Aar/Aal, CH2/CH3, aliphatic CH and its components (CH2 and CH3). The TG-FTIR was 

employed to investigate the pyrolysis behaviours of the sectioned plastic layer samples 

during the TGA heating, including their volatile matter yields and the changes in the 

aliphatic and aromatic CH structures of the volatile matter.  

 

Based on the in-situ study of the formation of the plastic layers, the new findings of the 

present study are as follows: (a) the thicknesses of the plastic layers were estimated using 

a data exploration of the measured temperature profiles and the characteristic 

temperatures obtained from the Gieseler fluidity test. It was observed that the thicknesses 

of the plastic layers were consistent with the Gieseler thermoplastic temperature ranges 

of the parent coals; (b) the changes in the IGP termination temperatures measured in 

different locations of the coal charges indicated the different extents of the fissuring at the 

coke/semi-coke sides, which influenced the maximum IGPs. These results were attributed 

to the properties of the coals, such as their mean maximum vitrinite reflectance, maceral 

concentrates, Gieseler maximum fluidities and volatile matter contents. 

 

The characterization of the physical and chemical changes inside the plastic layers using 

the analytical techniques provided the following insights: (a) there were correlations 

between the Gieseler maximum fluidities, the chemical structures analyzed by structural 

parameters and the petrographic properties (Mean maximum vitrinite reflectance and 

vitrinite contents). The selected coals with the lower mean maximum vitrinite reflectance 

and the higher vitrinite contents showed lower Aar/Aal ratios, which indicated lower 

contents of the aliphatic CH in the coal structures. It seemed that this appeared to cause 

higher levels of decomposition in the thermoplastic ranges, resulting in the higher 

Gieseler maximum fluidities. These correlations impacted on the different physical and 

chemical characteristics of the plastic layers; (b) the ATR-FTIR results showed that the 

normalized aliphatic CH decreased in the initial softening regions. This was followed by 

a relatively constant stage, and finally a drastic decrease on the coke sides of the plastic 

layers. These changes were consistent with a loss of bonds throughout the devolatilization 

process, which were analysed by the TG-FTIR. However, the levels of response appeared 

to vary with the Gieseler maximum fluidities derived from the chemical structures of the 
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six coals; (c) the higher fluidity coals that appeared to have higher aliphatic CH contents 

showed a lower decrease in their aliphatic CH at the earlier stages of the thermoplastic 

regions due to the aliphatic hydrocarbons in the volatile matter. This may have potentially 

caused further depolymerization in the intermediate plastic regions, which corresponded 

to the higher fluid levels of the plastic layers. In this context, the higher fluidity coals 

showed higher maximum porosities in the thermoplastic regions due to the higher degrees 

of gas entrapment in the highly viscous plastic regions. This suggested that the aliphatic 

functionalities of a coal may play a significant role in the development of its plastic 

properties and the subsequent semi-coke formation during the coking process. 

  


